Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

R. Angharad Baber, Jonathan P. H. Charmant,* Nicholas C. Norman,

A. Guy Orpen and Jean Rossi

School of Chemistry, University of Bristol, Bristol BS8 1TS, England

Correspondence e-mail:
jon.charmant@bris.ac.uk

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.088$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dimethylammonium tetrahydropentaborate

The title compound [systematic name: dimethylammonium 1,1'-spiro-bis(3,5,-dihydroxy-2,4,6-trioxa-1,3,5-triboracyclohexane)borate], $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}^{+} \cdot \mathrm{B}_{5} \mathrm{H}_{4} \mathrm{O}_{10}{ }^{-}$, contains the $\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]^{-}$tetrahydropentaborate anion, which possesses typical geometrical parameters, accompanied by dimethylammonium cations. The packing of these species is influenced by cation-to-anion $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and anion-to-anion $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The tetrahydropentaborate anion, $\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]^{-}$, has been crystallized with a variety of ammonium cations: $\left[\mathrm{NH}_{4}\right]^{+}$ (Loboda et al., 1993); $\left[\mathrm{H}_{2} \mathrm{NC}_{5} \mathrm{H}_{10}\right]^{+}$, $\left[\mathrm{NMe}_{4}\right]^{+}$and $\left[\mathrm{NEt}_{4}\right]^{+}$ (Wiebcke et al., 1993); [$\left.\mathrm{HNEt}_{3}\right]^{+}$(Loboda et al., 1994); $\left[\mathrm{HNBu}_{3}{ }_{3}\right]^{+}$(Turdybekov et al., 1992) and $\left[\mathrm{NPr}_{4}{ }_{4}\right]^{+}$(Freyhardt et al., 1994). In this paper, we report the crystal structure of a dimethylammonium salt of this anion, $\left[\mathrm{H}_{2} \mathrm{NMe}_{2}\right]^{+}$$\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]^{-}$, (I) (Fig. 1).

(I)

The anion consists of a central BO_{4} tetrahedron fused to four trigonal planar $\mathrm{BO}_{2}(\mathrm{OH})$ units and shows normal geometrical parameters (Table 1). Hydrogen bonding (Table 2) between adjacent $\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]^{-}$units results in $R_{2}^{2}(8)$ (Etter, 1990) dimers (Fig. 2). This anion-to-anion hydrogenbonding framework is supplemented by the formation of two hydrogen bonds from each dimethylammonium cation to two adjacent $\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]^{-}$anions.

Experimental

A large excess of $\mathrm{B}(\mathrm{OH})_{3}(55.6 \mathrm{mmol}, 3.44 \mathrm{~g}$, dried by the DeanStark method) was added to a stirred solution of $\mathrm{B}_{2}\left(\mathrm{NMe}_{2}\right)_{4}(1 \mathrm{ml}$, $5.56 \mathrm{mmol})$ in tetrahydrofuran (25 ml), and the solution left to stir overnight. After removal of the solvent in vacuo, a white solid remained, which was shown to contain some $\mathrm{B}_{2}(\mathrm{OH})_{4}$ and a majority of $\mathrm{B}(\mathrm{OH})_{3}$ by ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. Dissolution of this solid in degassed water followed by slow evaporation over several days afforded a small crop of thin needle-like crystals approximately 5 mm long, a fragment of one of which was shown to be $\left[\mathrm{H}_{2} \mathrm{NMe}_{2}\right]\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]$.

Received 19 May 2004 Accepted 20 May 2004 Online 29 May 2004

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}^{+} \cdot \mathrm{B}_{5} \mathrm{H}_{4} \mathrm{O}_{10}-$	$D_{x}=1.444 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=264.18$	Cu $K \alpha$ radiation
Monoclinic, $C 2 / c$	Cell parameters from 4393
$a=13.3664(3) \AA$	reflections
$b=11.4709(3) \AA$	$\theta=5.3-70.2^{\circ}$
$c=17.1147(4) \AA$	$\mu=1.19 \mathrm{~mm}^{-1}$
$\beta=112.160(1)^{\circ}$	$T=100(2) \mathrm{K}$
$V=2430.27(10) \AA^{3}$	Block, colourless
$Z=8$	$0.18 \times 0.10 \times 0.10 \mathrm{~mm}$
Data collection	
Bruker Proteum CCD area-detector	2225 independent reflections
\quad diffractometer	1847 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.026$
Absorption correction: multi-scan	$\theta_{\text {max }}=70.2^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 2003)	$h=-15 \rightarrow 16$
$T_{\text {min }}=0.792, T_{\text {max }}=0.886$	$k=-13 \rightarrow 13$
9127 measured reflections	$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.088$
$S=0.99$
2225 reflections
177 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0624 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.25$ e \AA^{-3}
$\Delta \rho_{\min }=-0.25 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

B1-O1	$1.4623(16)$	B3-O4	$1.3612(18)$
B1-O6	$1.4679(16)$	B3-O3	$1.3849(17)$
B1-O10	$1.4680(16)$	B4-O6	$1.3530(18)$
B1-O5	$1.4726(18)$	B4-O7	$1.3550(17)$
B2-O2	$1.3506(18)$	B4-O8	$1.3843(17)$
B2-O1	$1.3628(18)$	B5-O9	$1.352(17)$
B2-O3	$1.3860(18)$	B5-O10	$1.3643(18)$
B3-O5	$1.3571(18)$	B5-O8	$1.3813(17)$
B3-O3-B2	$118.78(11)$	B5-O8-B4	$119.22(11)$
B3-O5-B1	$123.11(10)$	B5-O10-B1	$123.93(10)$
B4-O6-B1	$123.62(10)$		

Table 2
Hydrogen-bonding geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {i }}$	0.92	1.86	2.7707 (15)	170
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\text {ii }}$	0.92	1.96	2.8765 (15)	173
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 7^{\text {iii }}$	0.848 (17)	1.852 (17)	2.6972 (15)	175.1 (16)
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 5^{\text {iv }}$	0.814 (16)	1.926 (16)	2.7340 (12)	171.6 (17)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O} 10^{v}$	0.841 (19)	1.862 (18)	2.7015 (13)	175.8 (18)
O9-H9A $\cdots \mathrm{O}^{\text {vi }}$	0.822 (18)	1.942 (18)	2.7526 (13)	168.8 (19)

Symmetry codes: (i) $1-x, y-1, \frac{1}{2}-z$; (ii) $x-1,1-y, z-\frac{1}{2}$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$; (iv)
$2-x, y, \frac{1}{2}-z ;$ (v) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (vi) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.
The methyl H atoms of the cation were located using a rotating group refinement, with $\mathrm{C}-\mathrm{H}$ bond lengths constrained to $0.96 \AA$ and displacement parameters equal to 1.5 times $U_{\text {eq }}$ of their parent C atom. The remaining H atoms of the cation were constrained to ideal geometries (Table 2) and refined with displacement parameters equal to 1.2 times $U_{\text {eq }}(\mathrm{N})$. All hydroxyl H atoms were located in Fourier difference maps, assigned displacement parameters equal to $1.5 U_{\text {eq }}(\mathrm{O})$ and refined with a distance restraint of 0.84 (3) \AA on the $\mathrm{O}-\mathrm{H}$ bonds.

Figure 1
The molecular structure of (I), showing the atom labelling scheme (50\% displacement ellipsoids).

Figure 2
Detail of (I) in stick representation (key: B pink, O red and H white) illustrating the dimeric $R_{2}^{2}(8)$ hydrogen-bonding motif linking adjacent $\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{4}\right]^{-}$anions.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT and SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

References

Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Freyhardt, C. C., Wiebcke, M., Felsche, J. \& Engelhardt, G. (1994). J. Inclusion Phenom. Macrocycl. Chem. 18, 161-175.

organic papers

Loboda, N. V., Antipin, M. Yu, Akimov, V. M., Struchkov, Yu T., Petrova, O. V. \& Molodkin, A. K. (1993). Zh. Neorg. Khim. 38, 1960-1962.
Loboda, N. V., Antipin, M. Yu, Struchkov, Yu T., Skvortsov, V. G., Petrova, O. V. \& Sadetdinov, Sh. V. (1994). Zh. Neorg. Khim. 39, 547-549.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Turdybekov, K. M., Struchkov, Yu. T., Akimov, V. M., Skvortsov, V. G., Petrova, O. V. \& Sadetdinov, Sh. V. (1992). Zh. Neorg. Khim. 37, 1250-1254. Wiebcke, M., Freyhardt, C. C., Felsche, J. \& Engelhardt, G. (1993). Z. Naturforsch, Teil B, 48, 978-985.

